News

Paper "Assessing the effect of a liquid water layer on the adsorption of hydrate antiagglomerants using molecular simulations" published in Journal of Chemical Physics

In collaboration with Clariant Oil Services, researchers from Nextmol have published the paper “Assessing the effect of a liquid water layer on the adsorption of hydrate anti-agglomerants using molecular simulations” in The Journal of Chemical Physics.

The paper investigates the adsorption of ten hydrate anti-agglomerants onto a mixed methane–propane sII hydrate surface covered by layers of liquid water of various thickness using molecular dynamics simulations. As a general trend, we found that the more liquid water that is present on the hydrate surface, the less favorable the adsorption becomes even though there are considerable differences between the individual molecules, indicating that the presence and thickness of this liquid water layer are crucial parameters for anti-agglomerant adsorption studies. Additionally, we found that there exists an optimal thickness of the liquid water layer favoring hydrate growth due to the presence of both liquid water and hydrate-forming guest molecules. For all other cases of liquid water layer thickness, hydrate growth is slower due to the limited availability of hydrate-forming guests close to the hydrate formation front. Finally, we investigated the connection between the thickness of the liquid water layer and the degree of subcooling and found a very good agreement between our molecular dynamics simulations and theoretical predictions.

Paper-06_system_horizontal

Reference: Assessing the effect of a liquid water layer on the adsorption of hydrate anti-agglomerants using molecular simulations Stephan Mohr, Rémi Pétuya, Juan Sarria, Nirupam Purkayastha, Scot Bodnar, Jonathan Wylde and Ioannis N. Tsimpanogiannis J. Chem. Phys. 157, 094703 (2022); DOI: 10.1063/5.0100260

For more information, read the full article, go to our blog or contact us.